Catalytic oxidative degradation of 17α-ethinylestradiol by FeIII-TAML/H2O2: estrogenicities of the products of partial, and extensive oxidation.
نویسندگان
چکیده
The oxidative degradation of the oral contraceptive 17α-ethinylestradiol (EE(2)) in water by a new advanced catalytic oxidation process was investigated. The oxidant employed was hydrogen peroxide in aqueous solution and the catalyst was the iron tetra-amido macrocyclic ligand (Fe(III)-TAML) complex that has been designated Na[Fe(H(2)O)(B*)] (Fe(III)-B*). EE(2) (10 μM) was oxidised rapidly by the Fe(III)-B*/H(2)O(2) (5 nM/4 mM) catalytic oxidation system at 25 °C, and for reactions at pH 8.40-11.00, no unchanged EE2 was detected in the reaction mixtures after 60 min. No oxidation of EE(2) was detected in blank reactions using either H(2)O(2) or Fe(III)-B* alone. The maximum rate of EE(2) loss occurred at pH 10.21. At this pH the half-life of EE(2) was 2.1 min and the oxidised products showed around 30% estrogenicity removal, as determined by the yeast estrogen screen (YES) bioassay. At pH 11.00, partial oxidation of EE(2) by Fe(III)-B*/H(2)O(2) (5 nM/4 mM) was studied (half-life of EE(2) was 14.5 min) and in this case the initial intermediates formed were a mixture of the epimers 17α-ethynyl-1,4-estradiene-10α,17β-diol-3-one (1a) and 17α-ethynyl-1,4-estradiene-10β,17β-diol-3-one (1b) (identified by LC-ToF-MS and (1)H NMR spectroscopy). Significantly, this product mixture displayed a slightly higher estrogenicity than EE(2) itself, as determined by the YES bioassay. Upon the addition of further aliquots of Fe(III)-B* (to give a Fe(III)-B* concentration of 500 nM) and H(2)O(2) (to bring the concentration up to 4 mM assuming the final concentration had dropped to zero) to this reaction mixture the amounts of 1a and 1b slowly decreased to zero over a 60 min period as they were oxidised to unidentified products that showed no estrogenicity. Thus, partial oxidation of EE(2) gave products that have slightly increased estrogenicity, whereas more extensive oxidation by the advanced catalytic oxidation system completely removed all estrogenicity. These results underscore the importance of controlling the level of oxidation during the removal of EE(2) from water by oxidative processes.
منابع مشابه
Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators.
A Fe-TAML/H2O2 catalytic oxidation process achieves facile in-solution total degradation of fenitrothion and two other organophosphorus (OP) pesticides. Degradation products have been identified and quantified providing evidence for oxidative hydrolysis, oxidative desulfuration, perhydrolysis, and deep oxidation. Degradation pathways can be selected by pH control to completely obviate all toxic...
متن کاملRemoval of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment
17α-ethinylestradiol (EE2), a synthetic oestrogen in oral contraceptives, is one of many pharmaceuticals found in inland waterways worldwide as a result of human consumption and excretion into wastewater treatment systems. At low parts per trillion (ppt), EE2 induces feminisation of male fish, diminishing reproductive success and causing fish population collapse. Intended water quality standard...
متن کاملThe Modulatory Effects of Pentoxifylline in Biochemical Changes Induced By 17α-Ethinyl Estradiol in the Rat Model
Background: Ethinylestradiol (EE) has induced cholestasis and hepatotoxicity in animal studies through reducing bile acid uptake by hepatocytes and induce of oxidative stress. Pentoxifylline (PTX) is a drug that by inhibition of release or transcription of proinflammatory cytokine cause prevents oxidative stress of liver cell and reduction of damage. We aimed to evaluate the effects of pentoxif...
متن کاملFe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution.
FeIII supported on resin as an effective catalyst for oxidation was prepared and applied for the degradation of aqueous phenol. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch reactor using hydrogen peroxide as the oxidant. The influent factors on oxidation, such as catalyst dosage, H2O2 concentration, pH, and phenol concentration were examined by...
متن کاملManganese‐oxidizing bacteria mediate the degradation of 17α‐ethinylestradiol
Manganese (II) and manganese-oxidizing bacteria were used as an efficient biological system for the degradation of the xenoestrogen 17α-ethinylestradiol (EE2) at trace concentrations. Mn(2+)-derived higher oxidation states of Mn (Mn(3+), Mn(4+)) by Mn(2+)-oxidizing bacteria mediate the oxidative cleavage of the polycyclic target compound EE2. The presence of manganese (II) was found to be essen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 46 19 شماره
صفحات -
تاریخ انتشار 2012